Eicosanoids, Fatty Liver and Insulin Resistance

Friday, May 22, 2009
I have to take a brief intermission from the heart disease series to write about a very important paper I just read in the journal Obesity, "COX-2-mediated Inflammation in Fat is Crucial for Obesity-linked Insulin Resistance and Fatty Liver". It's actually related to cardiovascular disease, although indirectly.

First, some background. Polyunsaturated fatty acids (PUFA) come mostly from omega-6 and omega-3 sources. Omega-6 and omega-3 are precursors to eicosanoids, a large and poorly understood class of signaling molecules that play a role in basically everything. Eicosanoids are either omega-6-derived or omega-3-derived. Omega-6 and omega-3 compete for the enzymes that convert PUFA into eicosanoids. Therefore, the ratio of omega-6 to omega-3 in tissues (related to the ratio in the diet) determines the ratio of omega-6-derived eicosanoids to omega-3-derived eicosanoids.

Omega-6 eicosanoids are very potent and play a central role in inflammation. They aren't "bad", in fact they're essential, but an excess of them is probably not good. Omega-3 eicosanoids are generally less potent, less inflammatory, and tend to participate in long-term repair processes. So in sum, the ratio of omega-6 to omega-3 in the diet will determine the potency and quality of eicosanoid signaling, which will determine an animal's susceptibility to inflammation-mediated disorders.

One of the key enzymes in the pathway from PUFA to eicosanoids (specifically, a subset of them called prostanoids) is cyclooxygenase (COX). COX-1 is expressed all the time and serves a "housekeeping" function, while COX-2 is induced by cellular stressors and contributes to the the formation of inflammatory eicosanoids. Non-steroidal anti-inflammatory drugs (NSAIDs) such as aspirin and ibuprofen inhibit COX enzymes, which is why they are effective against inflammatory problems like pain and fever. They are also used as a preventive measure against cardiovascular disease. Basically, they reduce the excessive inflammatory signaling promoted by a diet with a poor omega-6:3 balance. You wouldn't need to inhibit COX if it were producing the proper balance of eicosanoids to begin with.

Dr. Kuang-Chung Shih's group at the Department of Internal Medicine in Taipei placed rats on five different diets:
  1. A control diet, eating normal low-fat rat chow.

  2. A "high-fat diet", in which 45% of calories came from a combination of industrial lard and soybean oil, and 17% of calories came from sucrose*.

  3. A "high-fat diet" (same as above), plus the COX-2 inhibitor celecoxib (Celebrex).

  4. A "high-fat diet" (same as above), plus the COX-2 inhibitor mesulid.

  5. An energy-restricted "high-fat diet".

The "high-fat diets", besides being high in sucrose (table sugar), also presumably had a poor omega-6:3 ratio, in the neighborhood of 10:1 or possibly higher. Weight and fat mass in rats and humans increases with increasing omega-6 in the diet, and also increases with a high 6:3 ratio. I wrote about that here. Rats eating the high-fat diets (groups 2- 4) gained weight as expected**.

Rats in group 2 not only gained weight, they also experienced increased fasting glucose, leptin, insulin, triglycerides, blood pressure and a massive decline in insulin sensitivity (seven-fold relative to group 1). Rats in groups 3 and 4 gained weight, but saw much less of a deterioration in insulin and leptin sensitivity, and blood pressure. Group 2 also developed fatty liver, which was attenuated in groups 3 and 4. If you're interested, group 5 (energy restricted high-fat) was similar to groups 3 and 4 on pretty much everything, including insulin sensitivity.

So there you have it folks: direct evidence that insulin resistance, leptin resistance, high blood pressure and fatty liver are mediated by excessive inflammatory eicosanoid signaling. I wrote about something similar before when I reviewed a paper showing that fish oil reverses many of the consequences of a high-vegetable oil, high-sugar diet in rats. I also reviewed two papers showing that in pigs and rats, a high omega-6:3 ratio promotes inflammation (mediated by COX-2) and lipid peroxidation in the heart. Are you going to quench the fire by taking drugs, or by reducing your intake of omega-6 and ensuring an adequate intake of omega-3?

*Of course, they didn't mention the sucrose in the methods section. I had to go digging around for the diet's composition. This is typical of papers on "high-fat diets". They load them up with sugar, and blame everything on the fat.

**Rats gain fat mass when fed a high-fat diet (even if it's not loaded with sugar). But humans don't necessarily gain weight on a high-fat diet (i.e. low-carb weight loss diet). What's the difference? Low-carbohydrate diet trials indicate that humans spontaneously reduce their caloric intake when eating low carbohydrate, high-fat food.