Paleolithic Diet Clinical Trials, Part V

Monday, January 3, 2011
Dr. Staffan Lindeberg's group has published a new paleolithic diet paper in the journal Nutrition and Metabolism, titled "A Paleolithic Diet is More Satiating per Calorie than a Mediterranean-like Diet in Individuals with Ischemic Heart Disease" (1).

The data in this paper are from the same intervention as his group's 2007 paper in Diabetologia (2). To review the results of this paper, 12 weeks of a Paleolithic-style diet caused impressive fat loss and improvement in glucose tolerance, compared to 12 weeks of a Mediterranean-style diet, in volunteers with pre-diabetes or diabetes and ischemic heart disease. Participants who started off with diabetes ended up without it. A Paleolithic diet excludes grains, dairy, legumes and any other category of food that was not a major human food source prior to agriculture. I commented on this study a while back (3, 4).

One of the most intriguing findings in his 2007 study was the low calorie intake of the Paleolithic group. Despite receiving no instruction to reduce calorie intake, the Paleolithic group only ate 1,388 calories per day, compared to 1,823 calories per day for the Mediterranean group*. That's a remarkably low ad libitum calorie intake in the former (and a fairly low intake in the latter as well).

With such a low calorie intake over 12 weeks, you might think the Paleolithic group was starving. Fortunately, the authors had the foresight to measure satiety, or fullness, in both groups during the intervention. They found that satiety was almost identical in the two groups, despite the 24% lower calorie intake of the Paleolithic group. In other words, the Paleolithic group was just as full as the Mediterranean group, despite a considerably lower intake of calories. This implies to me that the body fat "set point" decreased, allowing a reduced calorie intake while body fat stores were burned to make up the calorie deficit. I suspect it also decreased somewhat in the Mediterranean group, although we can't know for sure because we don't have baseline satiety data for comparison.

There are a few possible explanations for this result. The first is that the Paleolithic group was eating more protein, a highly satiating macronutrient. However, given the fact that absolute protein intake was scarcely different between groups, I think this is unlikely to explain the reduced calorie intake.

A second possibility is that certain potentially damaging Neolithic foods (e.g., wheat and refined sugar) interfere with leptin signaling**, and removing them lowers fat mass by allowing leptin to function correctly. Dr. Lindeberg and colleagues authored a hypothesis paper on this topic in 2005 (5).

A third possibility is that a major dietary change of any kind lowers the body fat setpoint and reduces calorie intake for a certain period of time. In support of this hypothesis, both low-carbohydrate and low-fat diet trials show that overweight people spontaneously eat fewer calories when instructed to modify their diets in either direction (6, 7). More extreme changes may cause a larger decrease in calorie intake and fat mass, as evidenced by the results of low-fat vegan diet trials (8, 9). Chris Voigt's potato diet also falls into this category (10, 11). I think there may be something about changing food-related sensory cues that alters the defended level of fat mass. A similar idea is the basis of Seth Roberts' book The Shangri-La Diet.

If I had to guess, I would think the second and third possibilities contributed to the finding that Paleolithic dieters lost more fat without feeling hungry over the 12 week diet period.


*Intakes were determined using 4-day weighed food records.

**Leptin is a hormone produced by body fat that reduces food intake and increases energy expenditure by acting in the brain. The more fat a person carries, the more leptin they produce, and hypothetically this should keep body fat in a narrow window by this form of "negative feedback". Clearly, that's not the whole story, otherwise obesity wouldn't exist. A leading hypothesis is that resistance to the hormone leptin causes this feedback loop to defend a higher level of fat mass.